OR CHOICE BETVEEN EXPENDITURE TAX AND TAXES ON CONSUMPTION AND CAPITAL GOODS

M H MURTHY
D. 10/88 NOVEMBER 1988

HATIOMAL INSTITUTE OF PUBLIC FINANCE AND POLICY 18/2, SATSANG VIHAR MARG
SPECIAL INSTITUTIORAL AREA
NEW DELHI - 110067

Abstract

Using a two-period, two-commodity model, formulae for optimal rates of taxes under two revenue-neutral tax regines - (a) Expenditure tax and (b) Taxes on capital and consumption goods - are derived. Under the two tax rezines considered, it is found that at optimun the implicit rate of ta: on the capital goot is higher than that on the consuration good. Also, the implicit rate of tax on the eapital good under one tax regime is different from that under the other resine.

On Choice Between Expenditure Tax and Taxes on
 Consumption and Capital Goods

Y N Murty

1. Introduction

The probler of substituting a direct tax on consumption expend:ture (or an expenditure tax, as originally conceived by Kaldor, 1957 with comodity taxes (indirect taxes) is as important a problei in a developing countries today as is the problem of substituting expenditure tax with incone tases (direct taxes) in the develoned world. Ever since the pioneering work of Kaldor (1957) there has been a lot of lively debate (iJS Treasury, 1977; Feldstein, 1978; Bradford, 1989; Fullerton, Shoven and Whalley, 1983) about the relative effects of expend:ture and income taxes on various fiscal objectives like resource mobilisation, growth and equity. In contrast, little attention has been paid to the problem of substituting an expenditure tax with comodity taxes in spite of its importance in the current developing world. For instance, expressing his view on memoranda on tax reforms subaitted to the Royal Comission on Taxation of Profits and Incone (appointed in 1950) by Cominssion's Sub-Connittee of Econonists, Lord Butler, the then Chancellor of Exchequer said,
> "with the level of indirect taxation which we have now reached, and the extent to which the expenditure of those whose expenditure is not confined to necessarses inclute a large element of payaet of tax, it seens to the that it would be inpossible to earry through the examination of a scheal of taxation on expenditure without also examining on fairly fundanental lines the scope and purposes of indirect taxation." (Kaldor, 1957, p.7)

Lord Butler's view on the expenditure tax vis-a-vis indirect taxation in britain during the early fifties seens to be more relevant for designing tax reforms in many developing economies (Murty, 1987). For example, in a developing country like India 80 per cent of tax revenue comes from comodity taxation while direct taxes are major sources of revenue to government in many developed countries. The problem of having a uniform tax on all consumption goods (which can be interpreted as proportional tax on consumption expenditure) in relation
to differential comodity taxation is examined in detail with the help of static optimal commodity tax models. It is established that for certain types of utility functions for households (especially with weak separability between leisure and consumption goods), uniform commodity taxation is optimun. However, in most of these models indirect taxes on capital goods are not considered. Households may save part of their income and spend it in acquiring capital goods in the current period which guarantee them certain amounts of consumption goods in future even if they do not earn any type of income in future, includine, waze income. In this case, a uniform tax on consumption goods means a uniform tax on current and future consumption expenditures while differential comodity taxation implies different rates of taxes on consumption goods and capital goods.

In this paper, we consider two alternative revenue-neutral tax regimes: (a) A direct tax on present and future consumption expenditures and (b) Taxes on consumption and capital coods using a simple two period - two commodity model. We derive formulae for optimal rates of taxes and comment on the relative rates of taxes on consumption and capital goods. The plan of the remaining paper is as follows: Section 2 presents a model of expenditure tax while Section 3 deals with the probles of taxes on capital and consmption goods. Conclusions are Ludicated Én Section 4.

2. The Model of Expenditure Tax

Let us consider a representative individual in the economy who earns wage income and spends it in acquiring a consurption good and a capital good in the current period. The individuel has no wage income in the future. The consumption good he purchases in future depends upon the amount of capital good he purchases in the current period as explained by the production functional relationship
where

$$
\begin{aligned}
X_{11} & =F\left(X_{20}\right) \\
F^{\prime}\left(X_{20}\right) & =\frac{5 F \geq 0, F^{\prime \prime}\left(X_{20}\right)=}{\delta X_{20}} \frac{\hat{o}^{2} F<}{5 X_{20}} 2^{0}
\end{aligned}
$$

X_{20} : Capital good purchased by the individual in the current

period, and

X_{11} : Consumption good purchased by the individual in the future.

The individual has the following utility function

$$
\begin{equation*}
\mathrm{U}\left(\mathrm{X}_{10}, \mathrm{X}_{11}, \mathrm{~L}\right) \tag{2}
\end{equation*}
$$

where
$X_{10}:$ Consumption good purchased by the individual in the current
period.

L : Current period labour supply of the individual.

$$
\mathrm{U}_{1}=\frac{\delta \mathrm{U}}{\delta \mathrm{X}_{11}} \geq 0, \mathrm{u}_{2}=\frac{\hat{\mathrm{U}}}{\delta \mathrm{X}_{20}}=\frac{\delta \mathrm{U}}{\delta \mathrm{X}_{11}} \frac{\delta \mathrm{X}_{11}}{\delta \mathrm{X}_{20}} \geq 0, \mathrm{U}_{\mathrm{L}}=\frac{\delta \mathrm{U}}{\delta \mathrm{~L}} \geq 0
$$

If P_{1} and P_{2} are respectively producer prices of consumption and capital goods, the consumer's budget without the tax situation is defined as

$$
\begin{equation*}
P_{1} X_{10}+P_{2} X_{20}=w L \tag{3}
\end{equation*}
$$

where w is the wage rate.

Taking consumption good as numeraire if there is a tax on consumption expenditure at the rate ' e^{\prime}, the individual's budget constraint becomes

$$
\begin{equation*}
(1+e) X_{10}+(1+e) \frac{X_{11}}{1+r}=w L \tag{4}
\end{equation*}
$$

where r is the rate of time preference. The government's revenue constraint is defined as

$$
\begin{equation*}
e X_{10}+\frac{e^{X_{11}}}{1+r}=R \tag{5}
\end{equation*}
$$

Using (4) we can alternatively write (5) as

$$
w L-x_{10}-\frac{X_{11}}{1+r}=R
$$

(5^{-})

Given (1), (2) and (4), the f:rst order conditions for the individual's Lulity maximisation are given as

$$
\begin{align*}
& U_{2}=a(1+e) \tag{6}\\
& U_{2}=\frac{x(1+e) F^{\prime}\left(X_{20}\right)}{1+r}
\end{align*}
$$

$$
U_{L}=-a w
$$

where a is the marginal utility of money incone. The individual's budget constraint (4) can be alternatively written as

$$
\begin{equation*}
(1+e) X_{10}+(1+e) \quad \frac{F^{\prime} X_{20}}{(1+r)(i+r)}=w L \tag{7}
\end{equation*}
$$

Where is the elasticity of average procuetivity of capitai goos with respect to capital good itseif. ${ }^{2}$ Using (6), (7) can be written as

$$
\begin{equation*}
\ddot{i}_{2} x_{10}+\frac{\ddot{i}_{2} x_{20}}{1+1}+u_{1} L=0 \tag{8}
\end{equation*}
$$

The problen now is to find out the rate of tax on consumption expenditures X_{10} and X_{11} that maxinises E subject to the constraints defined by (5') and (8). This can be accomplished by aximising the following Lagrangian with respect to $\mathrm{X}_{10}, \mathrm{X}_{20}$ and L .

$$
\begin{equation*}
\hat{v}=\mathrm{U}+\lambda_{\left[\mathrm{LL}-\mathrm{X}_{10} \frac{\left.-\mathrm{X}_{11}-\mathrm{R}\right]}{1+r}+\mathrm{L}_{\left[\mathrm{U}_{1}\right.} \mathrm{X}_{10}+\frac{\mathrm{U}_{2} \mathrm{X}_{20}+\mathrm{y}_{L}}{1+\mathrm{r}_{i}} \mathrm{~L}\right]} \tag{9}
\end{equation*}
$$

Assuming that η is constant, the first order conditions for the maximum of ϕ are

$$
\begin{align*}
& U_{1}-\lambda+\mu\left[U_{11} X_{10}+U_{1}+\frac{U_{21} X_{20}}{1+\eta}+U_{L 1} L\right]=0 \tag{10}\\
& U_{2}-\frac{\lambda F^{\prime}}{1+r}+\mu\left[U_{12} X_{10}+\frac{U_{22} X_{20}}{1+\frac{n}{n}}+\frac{U_{2}}{1+\eta}+U_{L 2} L\right]=0 \tag{11}\\
& U_{L}+\lambda w+{ }_{L}\left[U_{1 L} X_{10}+\frac{U_{2 L} X_{20}}{1+\eta}+U_{L L} L+U_{L}\right]=0 \tag{12}
\end{align*}
$$

Writing

and substituting (6) in (10), (11) and (12) we have

$$
\mathrm{e}=\frac{(\lambda-\alpha)\left(1-\mathrm{H}^{\mathrm{L}}\right)-(\lambda-\alpha)\left(1-\mathrm{H}^{\mathrm{l}}\right)}{\alpha\left(1-\mathrm{H}^{\mathrm{L}}\right)+(\lambda-\alpha)\left(1-\mathrm{H}^{\mathrm{L}}\right)}
$$

$$
\begin{equation*}
e=\frac{(\lambda-\alpha)\left(1-H^{L}\right)-\frac{(1-\alpha)\left(1-H^{2}-n H^{2}\right)}{1+r_{1}}}{a\left(1-H^{L}\right)+\frac{(-c)\left(1-1^{2}-r H^{2}\right)}{1+r}} \tag{14}
\end{equation*}
$$

Therefore at optimum, the expenditure tax should be such that

$$
\begin{equation*}
1-\mathrm{H}^{1}=\frac{1-\mathrm{H}^{2}-\mathrm{H}^{2}}{1+\cdots} \tag{15}
\end{equation*}
$$

Alternatively

$$
\begin{equation*}
\frac{H^{1}-H^{2}}{1-\left(H^{1}-H^{2}\right)}= \tag{-}
\end{equation*}
$$

Equations (13) and (14) are implicit functions since H^{1}, H^{2} and H^{L} also depend upon e. Also, the optimum rate of expenditure tax should be such that H^{1} and H^{2} satisfy the equation (15).

Proposition 1

A direct tax on present and future consumption expenditures implies at optimum a tax on capital good which is higher than the uniform rate of tax on present and future consumption expenditures.

Proof: At optimum, the producer price of the capital good is

$$
\frac{F^{\prime}}{1+r}=s \geq 1
$$

with the assumption $F^{-} \geq 1+r$. With the tax on present and future consumption expenditures, the implicit consumer price of the capital good at optimum is

$$
\begin{equation*}
\hat{\mathrm{P}}=(1+e) \mathrm{s} \tag{16}
\end{equation*}
$$

Therefore the implicit tax on the capital good at optimum is

$$
\begin{equation*}
\hat{t}_{2}=(1+e) s-s=e s \tag{17}
\end{equation*}
$$

$$
\begin{gather*}
\text { Given } s \geq 1 \text { we have } \hat{\mathrm{t}}_{2} \geq \mathrm{e} \tag{18}\\
\text { QED }
\end{gather*}
$$

3. Taxes on Consumption and Capital Goods

Let there be equal revenue raising commodity taxes as compared to an expenditure tax at the rates t_{1} and t_{2} respectively on consumption and capital goods. Then the consumer's budget constraint becomes

$$
\begin{equation*}
\left(1+t_{1}\right) x_{10}+t_{2} X_{20}+\frac{\left(1+t_{1}\right)}{1+r} x_{11}=w L \tag{19}
\end{equation*}
$$

and the government's revenue constraint is

$$
\begin{equation*}
{ }^{t_{1}} X_{10}+t_{2} X_{20}+\frac{t_{1} X_{11}}{1+r}=R \tag{20}
\end{equation*}
$$

From (19) we can alternatively write (20) as

$$
\begin{equation*}
w L-X_{10}-\frac{X_{11}}{1+r}=R \tag{-}
\end{equation*}
$$

Utility maximising conditions for the consumer are

$$
\begin{align*}
& \mathrm{U}_{1}=\alpha\left(1+\mathrm{t}_{1}\right) \tag{21}\\
& \mathrm{U}_{2}=\alpha\left(\mathrm{t}_{2}+\frac{\left.\left(1+\mathrm{t}_{1}\right) \mathrm{F}^{\prime}\right)}{1+r}\right. \\
& \mathrm{U}_{\mathrm{L}}=-\alpha w
\end{align*}
$$

Using (21) we can write (19) ${ }^{4}$ as

$$
\begin{equation*}
U_{1} x_{10}+\frac{U_{2}+\alpha n t_{2}}{(1+n)} x_{20}+U_{L} L=0 \tag{22}
\end{equation*}
$$

The optimal rates of taxes on consumption and capital goods are determined by maximising the following Lagrangian with respect to X_{10}, L and X_{20}.

$$
\begin{align*}
& \ddagger= \mathrm{U}+;\left[w \mathrm{~L}-\mathrm{X}_{10} \frac{\mathrm{X}}{11}^{1+\mathrm{r}}-\mathrm{R}\right]+\mu\left[\mathrm{U}_{1} \mathrm{X}_{10} \frac{\mathrm{U}}{2}^{+}\right. \tag{23}\\
& 1 \frac{\alpha \eta \mathrm{t}_{2}}{\eta} \tag{24}\\
&\left.\mathrm{X}_{20}+\mathrm{U}_{\mathrm{L}} \mathrm{~L}\right] \\
& \mathrm{U}_{1}-\lambda+\mu\left[\mathrm{U}_{11} \mathrm{X}_{10}+\mathrm{U}_{1}+{\frac{\mathrm{U}_{21}}{1+X_{20}}}_{\left.1+\mathrm{U}_{\mathrm{L}_{1}} \mathrm{~L}\right]=0}\right.
\end{align*}
$$

$$
\begin{equation*}
U_{2}-\frac{F^{-}}{1+r}+-U_{12} \quad X_{10}+\frac{U_{22} X_{20}+U_{2}}{1+\eta}+U_{L 2} \quad L j=0 \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{U}_{\mathrm{L}}+\lambda w+,\left\{\mathrm{u}_{1 \mathrm{~L}} \mathrm{X}_{10}+\frac{\mathrm{U}_{2 \mathrm{~L}} \mathrm{X}_{20}}{1+\mathrm{U}_{\mathrm{LL}} \mathrm{~L}}+\mathrm{U}_{\mathrm{L}}\right\}=0 \tag{26}
\end{equation*}
$$

Writing

$$
\mathrm{H}^{1}=-\frac{\mathrm{U}_{11} \mathrm{X}_{10}+\frac{\mathrm{U}_{21} \mathrm{X}_{20}+\mathrm{U}_{\mathrm{L} 1} \mathrm{~L}}{1+\eta}}{\mathrm{U}_{1}}
$$

$$
\begin{gathered}
\mathrm{H}^{2}=-\frac{\mathrm{U}_{12} \quad \mathrm{X}_{10}+\frac{\mathrm{U}_{22} \mathrm{X}_{20}}{1+\mathrm{U}_{\mathrm{L} 2} \mathrm{~F}^{-} \mathrm{L}}}{\mathrm{U}_{2}} \\
\mathrm{U}_{1 \mathrm{~L}} \mathrm{X}_{10}+\frac{\mathrm{U}_{2 \mathrm{~L}} \mathrm{X}_{20}}{1+\mathrm{U}_{\mathrm{LL}} \mathrm{~L}} \\
\mathrm{H}^{\mathrm{L}}=-\frac{\mathrm{U}_{\mathrm{L}}}{}
\end{gathered}
$$

we have

$$
\begin{align*}
& t_{I}=\frac{(\lambda-\alpha)\left(1-H^{L}\right)-(i-\alpha)\left(1-H^{1}\right)}{\alpha\left(1-H^{L}\right)-(\lambda-\alpha)\left(1-H^{1}\right)} \\
& t_{2}=\frac{\left(\lambda\left(1-H^{L}\right)-\left(1+t_{1}\right)\left[\alpha\left(1-H^{L}\right)-\frac{\left.\left.(\lambda-\alpha)\left(1-(1+\eta) H^{2}\right)\right]\right\}}{(1+\eta)}\right.\right.}{a\left(1-H^{1}\right)+(\cdots-\lambda) \frac{\left(1-\left(1+r_{1}\right) H^{2}\right)}{(1+\eta)}} \tag{27}
\end{align*}
$$

Equations (27) and (28) are implicit functions in t_{1} and t_{2} for H^{1}, H^{2} and H^{L} also depend on t_{1} and t_{2}. Nevertheless, they describe the relationship between taxes and the demand system parameters for consumption and capital goods at optitum.

Proposition 2

Differential taxes on consumption and capital goods imply at optimum a tax on capital good higher than that on consumption good.

Proof: At optimun, the producer price of capital good is

$$
\frac{F^{\prime}}{1+r}=s \geq 1
$$

With the taxes on consumption and capital goods, the implicit purchaser price of capital good at optimun is given by (20) as

$$
\begin{equation*}
\hat{P}_{2}=t_{2}+\left(1+t_{1}\right) s \tag{29}
\end{equation*}
$$

Therefore, the implicit tax on capital good is given as

$$
\begin{equation*}
\hat{t}_{2}=\hat{p}_{2}-s=t_{2}+t_{1} s \tag{30}
\end{equation*}
$$

Also given $s \geq 1$, we have $t_{1} s \geq t_{1}$
Therefore we have

$$
\begin{align*}
\hat{t}_{2}= & t_{2}+t_{1} s \geq t_{1} \\
& Q E D . \tag{31}
\end{align*}
$$

Proposition 3

At optimura, the implicit rate of tax on the capital good with respect to differential commodity taxation can be different from the implicit rate with respect to a direct tax on present and future consumption expenditures.

Proof: From (17) and (30) we have implicit rates of taxes on capital good with respect to expenditure and commodity taxes as e s and $\mathrm{t}_{2}+\mathrm{t}_{1} \mathrm{~s}$.

From the equations (13), (14), (27) and (28) we can write

$$
\begin{gathered}
\mathrm{e} s \underset{\mathrm{~s}}{>} \mathrm{t}+\mathrm{t}_{1} \mathrm{~s} \\
\mathrm{~L} \\
\mathrm{QED}
\end{gathered}
$$

Proposition 4

If supply of labour is completely inelastic, the optimal tax on capital good is zero.

Proof: If supply of labour is completely inelastic ($H^{\mathrm{L}} \rightarrow \infty$) we have from (27) and (28)

$$
\begin{align*}
& t_{1}=\frac{\lambda-\alpha}{a} \tag{33}\\
& t_{2}=\frac{s\left(\lambda-\left(1+t_{1}\right) \alpha\right)}{\alpha} \tag{34}
\end{align*}
$$

substituting (33) in (34) we have

$$
t_{2}=0
$$

QED.

This result in turn implies that optimal tax on savings out of current income that are used to buy a capital good is zero. The optimal tax is a proportional tax on consumption expenditure (current and future). A similar result is obtained by Atkinson and Stiglitz (1972) using a model in which an individual lives for n periods, consume $s X_{i}$ in period i and supplies labour L in period 1. They found that sufficient condition for the consumption tax to be optimal is that there be weak separability between consumption and leisure. Our result is comparable to their result because the assumption of completely inelastic supply of labour implies the separability between leisure and other consumption goods.

Proposition 5

If supply of labour is perfectly elastic we have inverse elasticity rule for optimal commodity taxation.
!

$$
12 \begin{aligned}
& 1630-t \\
& 1258
\end{aligned}
$$

Proof: If cross price effects are zero, we have

$$
\begin{equation*}
\mathrm{H}^{1}=-\frac{\mathrm{U}_{11} \mathrm{X}_{10}}{\mathrm{U}_{1}} \text { and } \left.\mathrm{H}^{2}=\frac{-\mathrm{U}_{22} \mathrm{X}_{20}}{1+\eta} \right\rvert\, \mathrm{U}_{2} \tag{36}
\end{equation*}
$$

From (21) we have

$$
\begin{equation*}
\mathrm{U}_{11} \frac{\delta \mathrm{X}_{10}}{\frac{\delta \mathrm{t}_{1}}{}}=\alpha, \quad \mathrm{U}_{22} \frac{\delta \mathrm{X}_{2}}{\frac{\delta \mathrm{t}_{2}}{}}=\alpha \tag{37}
\end{equation*}
$$

Using (37) in (36) we have

$$
\begin{equation*}
H^{1}=-\frac{1}{e_{11}} \quad \text { and } H^{2}=-\frac{1}{e_{22}} \tag{38}
\end{equation*}
$$

where e_{11} and e_{22} are own price elasticities of denands for X_{10} and X_{20}. In addition, if supply of labour is perfectly elastic $\left(H^{L} \rightarrow 0\right)$, we can write (27) and (28) as

$$
\begin{align*}
& \mathrm{t}_{1}=\frac{1\left|\mathrm{e}_{11}\right|}{\alpha /(\lambda-\alpha)+\left(1-1 / k_{11} \mid\right)} \\
& t_{2}=\frac{\mathbf{s}\left\{(1+n) \lambda \mid(\lambda-\alpha)-\left(1+t_{1}\right)\left[(1+n) /(\lambda-\alpha)-\left(1-1| | e_{22} \mid\right)\right]\right\}}{\alpha(1+n) /(\lambda-\alpha)+\left(1-1 /\left|e_{22}\right|\right)} \tag{39}
\end{align*}
$$

4. Conclusions

Abstract

We have derived the formulae for optimal tax rates under the two tax regimes considered. These formulae are implicit functional relationships in tax rates, and demand and production function parameters that should hold good at optimum.

We have shown that
(a) A direct tax on present and future consmption expenditures implies at optimum a tax on capital good which is higher than the uniform rate on consumption expenditures.
(b) Differential taxes on consumption and capitai goods also imply at optimum a tax on capital good higher than the tax on consumption good and
(c) At optimum, the implicit rate of tax on the capital good with respect to differential comodity taxatior $=a n$ be different fron the implicit rate with respect to a direct tax on consumpiton expenditure.
(d) If the supply of labour is completely inelasic, the optimal rate of tax on capital good is zero. We have oriy tax on consumption good purchased in present and future.

Notes

1. Stern (1987) for example provides a review of literature on this subject. See also Atkinso: and Stiglitz (1977).
2. We have $\frac{F^{-}}{1+\eta}=\frac{X_{11}}{X_{20}}$ and therefore $X_{11}=\frac{F^{-}}{1+\eta} X_{20}$
3. $!$ is assumed to be constant for the sake of siaplifying derivations.
4. We have

$$
\begin{aligned}
t_{2} X_{20} & +\frac{\left(1+t_{1}\right) X_{11}}{1+r}=t_{2} X_{20}+\frac{\left(1+t_{1}\right) F^{\prime}}{(1+r)(1+\cdots)} X_{20} \\
& =\left[t_{2}+\frac{(1+t) F^{\prime}}{1+r}+t_{2}, X_{20} / 1+\right. \\
& =\frac{U_{2}+a n_{1} t_{2}}{a(1+n)}
\end{aligned}
$$

REFERENCES

Atkinson, A.B. and J.E. Stiglitz (1972). "The Stucture of Indirect Taxation and Economic Efficiency", Journal of Public Economics. 01, 97-119.

Atkinson, A.B. and J.E. Stiglitz (1980). Lectures on Public Economics, McGraw :is?, New York.

Bradford, D. (1980;. ©The Case for Personal Consumption Tax in J.A. Pechman, ed., What Should be Taxed: Income or Expenditure? Brookings Institutions, Washington, DC.

Feldstein, M. (1978). "The Welfare Cost of Capital Income Taxation", Journal of Political Economy, 86, 529-551.

Fullerton, D., J.B. Shoven and J. Whalley (1983). 'Replacing the US Income Tax with a Progressive Consumption Tax: A Sequential General Equilibrium Approach', Journal of Public Economics, 20, 3-23.

Kaldor, N. (1957). An Expenditure Tax, Allen and Unwin, London.

Murty, M.N. (1987). 'Horizontal Equity and Choice between Income and Expenditure Taxes, Economic_and Political Weekly, 12, March 21, 1987, 501-506.

Stern, N.H. (1987). "Unifornity Versus Selectivity in Tax Structure: Lesson from Theory and Policy", working Paper No. 9, Department of Economics Research Progranme, London School of Economics, UK.
U.S. Treasury (1977). Blueprints for Basic Tax Reform, Office of Tax Analysis, US Treasury, washington, DC.

Working paper	Title	Author ${ }^{\text {s }}$ name
1/88	Recent Initiatives in Enforcement and Trends in Income Tax Revenue: An Appraisal	Amaresh Bagchi (January)
2/88	Rationing, Dual Pricing and Ramsey Commodity Taxation: Theory and An Illustration using Indian Budget Data	Raghbendra Jha M N Murty and Ranjan Ray (April)
3/88	Economic Evaluation of Peoplés Participation in the Management of Common Property Resources	Kanchan Chopra G.K. Kadekodi and M N Murty (May)
4/88	New Series on National Accounts Statistics: Some Comments	Uma Datta Roy Choudhury (September)
5/88	On the Measurement of Unemployment	Satya Paul (September)
6/88	Private Corporate Investment and Effective Tax Rates: A Re-examination of a Feldstein-Chirinko Controversy	Raghbendra Jha Nisha Wadhwa (October)
7/88	Growth of Capital Goods Sector after the MidSixties: Some Observations	Gopinath Pradhan
8/88	The Distortionary Implications of the Indian Capital Gains Tax	Subhayu Bandopadhyay and Arindam Das-Gupta (October)
9/88	Export Demand and Supply Elasticities for Selected Industrial Countries, 1970-1983	A V L Narayana and Arvind Panagariya
10/88	On Choice between Expenditure and Taxes on Consumption and Capital Goods	M N Murty

33624950519

